Acta Cryst. (1997). C53, 1116-1117

4-Hydroxy-2,6-bis[(4-methylpiperazinyl)methyl]benzonitrile Monohydrate

K. Gunasekaran, ${ }^{a}$ S. Shanmuga Sundara Raj, ${ }^{a}$
D. Velmurugan, ${ }^{a *}$ T. M. Rajendran ${ }^{b} \dagger$ and
M. Kandaswamy ${ }^{b}$
a Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Madras 600 025, India, and ${ }^{b}$ Department of Inorganic Chemistry, University of Madras, Guindy Campus, Madras 600 025, India

(Received 15 November 1995; accepted 3 February 1997)

Abstract

The two piperazine rings of the title compound, $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O} . \mathrm{H}_{2} \mathrm{O}$, assume a chair conformation and the exocyclic methyl groups in the piperazine rings are in equatorial positions. The best planes through the C atoms of the two piperazine rings make a dihedral angle of $40.1(1)^{\circ}$. The mean puckering amplitude for the piperazine moiety is 0.598 (3) \AA. The structure is stabilized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ intermolecular hydrogen bonding.

Comment

As part of our interest in the chemistry of binucleating ligands containing N -dentating atoms, the title compound, (I), was synthesized by Mannich reaction (Hodgkin, 1984). The average $\mathrm{N}-\mathrm{C}$ distance in the piperazine ring is 1.468 (2) A, in agreement with the value of $1.458 \AA$ found in hydropiperazine (Schwarzenbach, 1968). The observed bond angles in the heterocyclic rings are distributed close to 110°, indicating that all the ring atoms including the N atoms are $s p^{3}$ hybridized (Perales, Cano \& García-Blanco, 1977).

(I)

The cyano group lies in plane with the phenyl group. In piperazine ring A, the C atoms $\mathrm{C} 9, \mathrm{C} 10, \mathrm{C} 12$ and C 13 form the base of the chair while the N 8 atom deviates from the plane by -0.701 (3) \AA and N 11 by 0.673 (2) \AA. Similarly, in ring B, atoms C17, C18, C20 and C21 lie in a plane while the N atoms N16 and N19 deviate

[^0]by 0.683 (2) and -0.686 (3) \AA, respectively. The methyl groups attached to N11 and N19 occupy equatorial positions. The best planes through the C atoms make a dihedral angle of $40.1(1)^{\circ}$.

An interesting aspect of the molecular conformation is that even though the two piperazine rings have similar bond geometry and are substituted symmetrically with respect to the phenyl ring, they adopt different orientations with respect to the phenyl ring.
The structure is stabilized by an intramolecular O $\mathrm{H} \cdots \mathrm{N}$ hydrogen bond [O23-H23 1.062 (4), N8… H 23 1.783 (3), N8…O23 2.642 (3) \AA and $\mathrm{O} 23-\mathrm{H} 23 \cdots \mathrm{~N} 8$ $134.8(2)^{\circ}$]. The water molecule aids packing by forming intermolecular hydrogen bonds [OW $\cdots \mathrm{N} 11\left(-x+\frac{1}{2}\right.$, $\left.\left.y-\frac{1}{2},-z+\frac{3}{2}\right) 2.949(3) \AA\right]$.

Fig. 1. A view of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Experimental

p-Cyanophenol (0.1 mol) in ethanol (150 ml) was mixed with an excess of N -methylpiperazine and stirred as a formaldehyde solution and refluxed. After evaporation of ethanol, compound (I) was obtained by washing with sodium carbonate solution, extracting with diethyl ether and drying.

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O} . \mathrm{H}_{2} \mathrm{O}$
$M_{r}=361.49$
Monoclinic
$C 2 / c$
$a=34.250(3) \AA$
$b=9.134(1) \AA$
$c=13.819$ (1) \AA
$\beta=112.7(1)^{\circ}$
$V=3988.3$ (7) \AA^{3}
$Z=8$
$D_{x}=1.20 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.251 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by flotation

$$
\begin{aligned}
& \text { Cu } K \alpha \text { radiation } \\
& \lambda=1.5418 \AA \\
& \text { Cell parameters from } 22 \\
& \text { reflections } \\
& \theta=14-22^{\circ} \\
& \mu=0.61 \mathrm{~mm}^{-1} \\
& T=298 \mathrm{~K} \\
& \text { Needle } \\
& 0.42 \times 0.34 \times 0.27 \mathrm{~mm} \\
& \text { Colourless } \\
& \\
& \\
& 2454 \text { reflections with } \\
& I>3 \sigma(I) \\
& R_{\text {int }}=0.013
\end{aligned}
$$

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans

Absorption correction:	$\theta_{\max }=60^{\circ}$
empirical via ψ scans	$h=0 \rightarrow 38$
(North, Phillips \&	$k=0 \rightarrow 10$
Mathews, 1968)	$l=-15 \rightarrow 15$
$T_{\min }=0.832, T_{\max }=0.998$	3 standard reflections
2992 measured reflections	every 200 reflections
2812 independent reflections	frequency: 120 min
	intensity decay: $<1.3 \%$

Refinement

Refinement on F
$R=0.06$
$w R=0.082$
$S=0.878$
2454 reflections
346 parameters
All H atoms refined
$w=1 /\left[\sigma^{2}(F)+0.019 F^{2}\right]$
$(\Delta / \sigma)_{\max }=0.023$
$\Delta \rho_{\text {max }}=0.53$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.25$ e \AA^{-3}
Extinction correction: none
Scattering factors from International Tables for X-ray Crystallography (Vol. IV)

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{Cl}-\mathrm{C} 2$	1.392 (5)	C10-N11	1.462 (5)
C1-C6	1.408 (4)	N11-C12	1.472 (3)
$\mathrm{Cl}-\mathrm{O} 23$	1.363 (3)	N11-C14	1.463 (3)
$\mathrm{C} 2-\mathrm{C} 3$	1.387 (4)	C12-C13	1.521 (4)
C2-C15	1.521 (4)	C15-N16	1.464 (5)
C3-C4	1.402 (4)	N16-C17	1.469 (4)
C4-C5	1.395 (5)	N16-C21	1.473 (3)
C4-C24	1.430 (4)	C17-C18	1.515 (5)
C5-C6	1.373 (4)	C18-N19	1.454 (4)
C6-C7	1.523 (5)	N19-C20	1.464 (4)
C7-N8	1.480 (3)	N19-C22	1.470 (6)
N8-C9	1.478 (3)	C20-C21	1.522 (5)
N8-Cl3	1.472 (5)	C24-N25	1.151 (4)
C9-C10	1.517 (4)		
C6-Cl-O23	120.7 (3)	C9-C10-N11	110.7 (2)
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{O} 23$	118.1 (3)	C10-N11-C14	109.9 (3)
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 6$	121.2 (3)	$\mathrm{C10}-\mathrm{N} 11-\mathrm{Cl2}$	109.6 (2)
$\mathrm{C1}-\mathrm{C} 2-\mathrm{C} 15$	118.2 (2)	C12-N11-C14	110.5 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	119.7 (3)	$\mathrm{N} 11-\mathrm{Cl2}-\mathrm{C} 13$	110.4 (2)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 15$	122.1 (3)	N8-C13-C12	109.4 (3)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	119.2 (3)	C2-C15-N16	112.6 (2)
C3-C4-C24	120.0 (3)	C15-N16-C21	110.3 (2)
C3-C4-C5	120.5 (2)	C15-N16-C17	110.7 (2)
C5-C4-C24	119.4 (3)	C17-N16-C21	109.3 (2)
C4-C5-C6	120.7 (3)	N16-C17-C18	109.9 (2)
$\mathrm{Cl}-\mathrm{C} 6-\mathrm{C} 5$	118.7 (3)	C17-C18-N19	109.9 (3)
C5-C6-C7	119.7 (3)	$\mathrm{C} 18-\mathrm{N} 19-\mathrm{C} 22$	111.4 (3)
$\mathrm{Cl}-\mathrm{C} 6-\mathrm{C} 7$	121.6 (2)	$\mathrm{C} 18-\mathrm{N} 19-\mathrm{C} 20$	109.1 (3)
C6-C7-N8	111.5 (3)	C20-N19-C22	110.6 (3)
C7-N8-Cl3	110.5 (2)	N19-C20-C21	110.3 (2)
C7-N8-C9	111.8 (2)	N16-C21-C20)	109.8 (2)
$\mathrm{C} 9-\mathrm{N} 8-\mathrm{Cl} 3$	109.1 (2)	C4-C24-N25	177.8 (3)
N8-C9-C10	109.3 (2)		
C9-N8-C13-C12	-60.3 (3)	C17-N16-C21-C20	-58.0 (3)
$\mathrm{Cl} 3-\mathrm{N} 8-\mathrm{C} 9-\mathrm{C} 10$	60.3 (3)	C21-N16-C17-C18	58.9 (3)
N8-C9-Cl0-N11	-59.7 (3)	N16-C17-C18-N19	-60.6 (3)
C9-C10-N11-C12	58.3 (3)	$\mathrm{C} 17-\mathrm{C} 18-\mathrm{N} 19-\mathrm{C} 20$	60.3 (3)
$\mathrm{Cl0}-\mathrm{Nl1-C12-C13}$	-58.0 (3)	$\mathrm{C} 18-\mathrm{N} 19-\mathrm{C} 20-\mathrm{C} 21$	-59.6 (3)
N11-C12-C13-N8	59.4 (3)	N19-C20-C21-N16	58.8 (3)

Refinement was performed by full-matrix least-squares methods. All the H atoms were located from the difference Fourier map, except the two of the water molecule ($\mathrm{O} W$), and were included in the refinement. Calculations were performed using VAX730 and MicroVAX II computers.
Data collection: SDP (Frenz, 1978). Cell refinement: SDP. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELX76
(Sheldrick, 1976). Molecular graphics: PLUTO (Motherwell \& Clegg, 1978). Software used to prepare material for publication: PARST (Nardelli, 1983).

KG thanks the University Grants Commission (India); DV thanks CSIR (India) for providing financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: PT1043). Services for accessing these data are described at the back of the journal.

References

Frenz, B. A. (1978). The Enraf-Nonius CAD-4 SDP - a Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld \& G. C. Bassi, pp. 64-71. Delft University Press
Hodgkin, J. H. (1984). Aust. J. Chem. 37, 2371-2374.
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. Program for Plotting Molecular and Crystal Structures. University of Cambridge, England.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Perales, A., Cano, F. H. \& García-Blanco, S. (1977). Acta Cryst. B33, 3172-3175.
Schwarzenbach, D. (1968). J. Chem. Phys. 48, 4134-4140.
Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. University of Cambridge, England.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1997). C53, 1117-1119

3-(1,8-Naphthalenedicarboximido)benzonitrile [or N -(3-Cyanophenyl)-1,8-naphthalimide], $\mathrm{C}_{19} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$

Rhys A. Batchelor, ${ }^{a}$ Christopher A. Hunter ${ }^{b}$ and Jim Simpson ${ }^{a}$
${ }^{a}$ Department of Chemistry, University of Otago, PO Box
56, Dunedin, New Zealand, and ${ }^{b}$ Department of Chemistry, University of Sheffield, Sheffield S3 7HF, England. E-mail. jsimpson@alkali.otago.ac.nz
(Received 14 November 1996; accepted 6 March 1997)

Abstract

The reaction of 3-cyanoaniline and naphthalic anhydride in refluxing dimethylformamide yielded the title compound. In the crystal, the naphthalimide and benzonitrile ring planes are inclined at $69.36(16)^{\circ}$. The molecules pack in columnar stacks parallel to the c axis.

[^0]: \dagger Present address: Department of Chemistry, Pondicherry University, Pondicherry, India.

